February 26, 2013

FEATURE STORY: Semiconductor HUBS – Macro Growth from Micro Chips

By: Jenny Vickers

Source: Business Facilities magazine

The semiconductor industry is responsible for producing integrated circuits or “chips” that have become one of the necessary components for our world to operate. They act as the brains of every electronic device—and are literally found everywhere—inside phones, cars, clothes, computers, home appliances, medical devices, car brakes, weapons, and more. As nanotechnology has advanced, so have the chips. Companies are now able to produce wafers with microchip circuits as small as 28 nanometers—which are barely visible to the human eye. However, with an industry garnering billions of dollars in sales and creating thousands of new jobs, there is certainly nothing “nano” about it.

In 2011, U.S. semiconductor sales alone totaled more than $150 billion, and semiconductors make our trillion dollar electronics industry possible. But the industry produces more than just financial returns. Jobs in this industry are in line with the types of employment opportunities that are sought after: stable, well-paid, semi- and high-skilled labor jobs, as well as managerial, design and engineering positions. In the U.S. semiconductor employment is the biggest job growth sector overall with employment rising nationwide by 3.7 percent to nearly a quarter of a million workers in 2012.

The semiconductor industry is a highly competitive global industry with constant pressure on chip makers to come up with something better and even cheaper than what redefined state-of-the-art only a few months before. New technologies are being developed at an unprecedented pace and our highly mobile world is changing the shape of the semiconductor industry in new ways.

“We are moving away from a market dominated by PCs and into a new era of mobility,” said Jessica Kerley, Communications Specialist for GLOBALFOUNDRIES, one of the world’s leading semiconductor manufacturers. “Over the past 10 years, computing has moved from the desktop to the laptop to the pocket. There are now almost as many cell phone subscriptions as people in the world. ‘Mobile’ is the watchword in today’s landscape.”

The industry stretches across almost every region of the country and into the majority of states from California and Texas to Florida, Massachusetts and New York. However, there are several regions which are developing semiconductor “ecosystems” in order to attract innovation-driven companies and grow the economy. These areas are not only conducting advanced semiconductor manufacturing, design and commercialization, bat are training workers for jobs that can compete on a global scale.

In Upstate NY, GLOBALFOUNDRIES is investing $6.9 billion to establish a new factory on an abandoned rocket-testing site in Malta and just this week announced it is building a new $2 billion technology development center. In Austin, TX, Samsung is already at work in a $4 billion plant expansion in Austin. In Chandler, AZ, Intel is investing more than $300 million to build a new R&D facility. And in Albuquerque, NM, Sandia’s MESA facility is in the midst of groundbreaking R&D work on semiconductor wafers, while emerging technology company Skorpios Technologies is helping spearhead the evolution of the networking industry.


The semiconductor industry has been a key driver to the revitalization of upstate New York’s “Tech Valley”—a 19-county region of eastern New York State that spans from just south of Montreal to just north of New York City. Over the past decade, this region has seen billions of dollars of public and private investment, the result of which is the development of a true technology cluster in upstate New York with significant semiconductor and nanotechnology assets, including IBM, GE Global Research, Sematech and the College of Nanoscale Science and Engineering (CNSE).

The region is now a major hub for advanced semiconductor manufacturing and research, attracting big firms, their vendors and suppliers, smaller start-ups, new education and research facilities. Today, more than 1,500 high-tech companies call Tech Valley home.

Recognizing the region’s potential, Forbes recently predicted that “New York’s Tech Valley could become the Silicon Valley of Nanotech and even surpass it in economic importance.

At the heart of this development is the Global 450 Consortium (G450C), an initiative spearheaded by Gov. Andrew Cuomo to further position New York to become the nanotech capital of the world. In September 2011, Gov. Cuomo announced the consortium, a $4.8 billion, first-of-its-kind collaboration housed at the CNSE’s Albany NanoTech complex. The G450C consists of five leading international companies that are working to create the next generation of computer chip technology: IBM, Intel, GLOBALFOUNDRIES, TSMC and Samsung.

“This unprecedented private investment in New York’s economy will create thousands of new jobs and make the state the epicenter for the next generation of computer chip technology,” said Gov. Cuomo.

IBM has pledged to invest $3.6 billion towards developing 22-nanometer and 14-nanometer process technology for computer chips. IBM will also work on a second project with Intel, TSMC, GLOBALFOUNDRIES and Samsung on moving existing 300mm (12-inch) wafer manufacturing technology to more advanced 450mm (18-inch) technology. 450mm wafers yield roughly twice the number of chips as today’s 300mm wafers, which lowers the cost of making future chips. The project is expected to create and retain nearly 7,000 jobs across New York, including 2,500 new technology jobs.

To support the project, New York State is investing $400 million in CNSE to expand and house the world’s first G450C, adding nearly 500,000 square feet of next-generation infrastructure, an additional 50,000 square feet of Class 1 capable cleanrooms, and more than 1,000 scientists, researchers and engineers from CNSE and global corporations.

CNSE is the world’s most advanced university-driven research enterprise, offering students a one-of-a-kind academic experience and providing over 300 corporate partners with access to an unmatched ecosystem for leading-edge R&D and commercialization of nanoelectronics and nanotech innovations. CNSE’s foot print spans upstate New York, including its Albany NanoTech Complex, an 800,000-square-foot, $14 billion state-of the-art megaplex.

“[CNSE] houses the most advanced clean rooms, tools and equipment, as well as next generation tools that are still several years from making it out into industry,” said Steve Janack, CNSE vice president for marketing and communications. “It is a unique environment unlike any place in the world. You have the world’s leading tech companies doing next generation innovation R&D and commercialization work here on site and doing so in an environment that allows them to mitigate the costs and accelerate their research by pooling their money.”

According to Janack, public and private investments are being leveraged to drive high tech growth opportunities across Upstate New York, including Utica, Rochester, Syracuse, and other areas. In Utica, CNSE has partnered with SUNYIT to build a facility known as Quad C (Computer Chip Commercialization Center) where companies can develop system-on-a-chip technologies. In the Rochester area, CNSE’s Smart System Technology and Commercialization Center (STC) offers state-of-the-art capabilities for MEMS fabrication and packaging.

“If you are a company that needs to be at the cutting edge, you are looking for opportunities to innovate while reigning in costs and to do so in an environment that allows you to accelerate your innovation at a rate where you can beat the competition,” said Janack. “What we are seeing is that increasingly the location of choice for the semiconductor industry to do R&D, commercialization, and advanced manufacturing is New York.”

There’s no question that New York is at the forefront of a nanotechnology revolution. Just last week, GLOBALFOUNDRIES, which is now the second largest computer chip foundry in the world, announced they are going to build a $2 billion Technology Development Center (TDC) to complement their existing computer chip fab in Malta, creating 1,000 new jobs.

The TDC will include 90,000 square feet of flexible cleanroom space that will house a variety of semiconductor development and manufacturing areas to support the transition to new technology nodes. Construction of the TDC is planned to begin in early 2013 with completion targeted for late 2014.

Fab 8 is the most advanced semiconductor foundry campus in the world. Since breaking ground on Fab 8 in 2009, the project has created approximately 2,000 new direct jobs, 9,000 new indirect jobs, and more than 10,000 new construction jobs. The company has been making significant investments in technology development at Fab 8 and today development is underway at the 20nm and 14nm technology nodes. When fully ramped, the total clean-room space will be approximately 300,000 square feet, roughly equivalent to six football fields of state-of-the-art semiconductor wafer manufacturing space, and will be capable of a total output of approximately 60,000 wafers per month.

“The TDC is expected to play a key role in the company’s strategy to develop innovative semiconductor solutions allowing customers to compete at the leading edge of technology,” said Jessica Kerley, Communications Specialist for GLOBALFOUNDRIES.

According to Kerley there were many important reasons that drove GLOBALFOUNDRIES decision to build Fab 8 in upstate NY, but the three primary considerations involve education, ecosystem and economics.

“New York’s investment in the semiconductor industry, including the incentives and tax credits for the Fab 8 project, represents a long-term economic development strategy that is working,” said Kerley. “The State of New York expects to see a return of $2.54 for every $1.00 spent on the Fab 8 project, and the State’s innovative approach to public-private partnerships is reshaping upstate NY’s Tech Valley.”

Read more